If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-30x+10=0
a = 12; b = -30; c = +10;
Δ = b2-4ac
Δ = -302-4·12·10
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{105}}{2*12}=\frac{30-2\sqrt{105}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{105}}{2*12}=\frac{30+2\sqrt{105}}{24} $
| E^4^x-1/x=0 | | 10=y/3+8 | | -40+3x=44-x | | -47+3x=-2x+23 | | 1/4+1/4+3/8+x=1 | | -42=-7/8u | | 4+k=32 | | 2f=46 | | 15=d-12 | | 6z=1 | | (x−1)2=64(x−1)2=64 | | -10-7x=-9x+14 | | 1/5d+1/4=-19/2 | | 14/25=x/5 | | 3x-34=2x+26 | | 5x+2(x+3)=9 | | 70=25x | | 7y-0,8=4y-0,2 | | (2x+5)+(x+1)=180 | | -68+3x=58-6x | | 3+6u=31 | | (13/3x)-(4/x)=12 | | P(x)=95000(30)+200000 | | 5y=69 | | 13/3x-4/x=12 | | 6d-11/2=2d−13/2 | | 2y-1,7=y+1,4 | | (3r)^2-45=0 | | 2=40/(3x-5)(2x-1) | | (1/3)x+4=7 | | D=1.5t+4 | | (3x+4)/7=1 |